Главная » Электирика

Устройство светодиодной лампы на 220 вольт




Светодиодная лампа: устройство и принцип работы

Устройство и принцип работы светодиодных ламп. Основные части осветительного прибора:

- светодиоды

- драйвер

- цоколь

- корпус.

Светоизлучающий диод. Буквенно его обозначают сокращением СИД (СД) в русском языке или LED в английском. Собственно, это и есть источник света светодиодной лампы .

Принцип его работы полностью повторяет процессы, происходящие в обыкновенном полупроводниковом диоде с p-n переходом из кремния или германия: при подаче положительного потенциала к аноду, а отрицательного к катоду в материалах начинается движение отрицательно заряженных электронов к аноду, а дырок к катоду. В итоге, диод пропускает электрический ток только одного прямого направления.

Однако, светодиод выполнен из других полупроводниковых материалов, которые при бомбардировке в прямом направлении носителями зарядов (электронами и дырками) осуществляют их рекомбинацию с переводом на другой энергетический уровень. В итоге происходит выделение фотонов - элементарных частиц электромагнитного излучения светового диапазона.

Даже в электрических схемах в качестве их обозначений используются обозначения обычных диодов, только с добавлением двух стрелочек, обозначающих излучение света.

Полупроводниковые материалы обладают разными свойствами выделения фотонов. Такие вещества, как арсенид галия (GaAs) и нитрид галлия (GaN), являясь прямозонными полупроводниками, одновременно прозрачны для видимого спектра световых волн. При замене ими слоев p-n перехода происходит выделение света.

Расположение слоев, используемых в светодиоде, показано на рисунке ниже. Их маленькая толщина порядка 10÷15 нм (наномикрон) создается специальными методами химического осаждения из газовой фазы. В слоях размещены контактные площадки для анода и катода.

Как при любом физическом процессе, во время преобразования электронов в фотоны существуют потери энергии, обусловленные следующими причинами:

- часть световых частиц просто теряется внутри даже такого тонкого слоя

- при выходе из полупроводника возникает оптическое преломление световых волн на границах кристалл/воздух, искажающее длину волны.

Применение специальных мер, например, использование сапфировой подложки, позволяет создать бо́льший световой поток. Такие конструкции применяются для установки в лампы освещения, но не для обычных светодиодов, используемых в качестве индикаторов, показанных на рисунке ниже.

Они имеют линзу, выполненную из эпоксидной смолы и рефлектор для направления света. В зависимости от назначения свет может распространяться в широких диапазонах угла 5-160°.

Дорогие светодиоды, выпускаемые для ламп освещения, производители изготавливают с ламбертовской диаграммой. Это означает, что их яркость постоянна в пространстве, не зависит от направления излучения и угла наблюдения.

Габариты кристалла весьма маленькие и от одного источника можно получить небольшой поток света. Поэтому для ламп освещения такие светодиоды объединяют довольно большими группами. При этом, создать от них равномерное освещение во все стороны весьма проблематично: каждый светодиод является точечным источником.

Частотный спектр световых волн от полупроводниковых материалов значительно уже, чем от обычных ламп накаливания или солнца, что утомляет глаза человека, создает определенный дискомфорт. С целью исправления этого недостатка в отдельные конструкции светодиодов для освещения вводится слой люминофора.

Величина излучаемого светового потока полупроводниковых материалов зависит от тока, проходящего через p-n переход. Чем больше ток, тем выше излучение, но до определенного значения.

Маленькие габариты, как правило, не позволяют использовать токи, превышающие 20 миллиампер для индикаторных конструкций. У мощных осветительных ламп применяется теплоотвод и дополнительные меры защиты, использование которых, однако, строго ограничено.

При запуске световой поток лампы пропорционально возрастает с увеличением тока, но затем из-за образования тепловых потерь начинает снижаться. Следует понимать, что процесс выделения фотонов из проводника не связан с тепловой энергией, светодиоды относятся к источникам холодного света.

Однако, проходящий через светодиод ток в местах контактов различных слоев и электродов преодолевает переходное сопротивление этих участков, вызывающее нагрев материалов. Выделяемое тепло вначале только создает потери энергии, но при увеличении тока может повредить конструкцию.

Количество светодиодных кристаллов, установленных в одну лампу, может превышать сотню работающих элементов. На каждый из них необходимо подвести оптимальный ток. Для этого создают стеклотекстолитовые платы с токопроводящими дорожками. Они могут иметь самую различную конструкцию.

К контактным площадкам плат припаиваются светодиодные кристаллы. Чаще всего их формируют в определенные группы и запитывают последовательно друг с другом. Через каждую созданную цепочку пропускают один и тот же ток.

Такую схему проще реализовать технически, но она обладает одним главным недостатком - при нарушении одного любого контакта вся группа перестает светить, что является основной причиной поломки лампы.

Драйверы. Подвод постоянного напряжения к каждой группе светодиодов выполняется от специального устройства, которое раньше называли блоком питания, а сейчас — термином “драйвер”.

Данное устройство несет функции преобразования входного напряжения сети, например,

220 Вольт квартирной или 12 Вольт автомобильной сети в оптимальную величину питания каждой последовательной группы.

Подвод одного стабилизированного тока к каждому кристаллу по параллельной схеме технически сложен и применяется в редких случаях. Работа драйвера может проводиться на основе трансформаторной или иной схемы. Среди них распространены следующие варианты. В зависимости от конфигурации и количества примененных элементов они могут быть разными:

Самые простые и дешевые драйверы рассчитаны на питание от стабилизированного напряжения, сеть которого защищена от бросков и импульсов перенапряжений. У них даже может отсутствовать токоограничивающий резистор в выходной цепи питания, что характерно для аккумуляторных фонариков, светодиоды которых зачастую подключены непосредственно к выходу АКБ .

В результате, пиолучается, что они питаются завышенным током и хотя светят довольно ярко, очень часто перегорают. При использовании дешевых ламп с драйверами без защиты от перенапряжений осветительной сети светодиоды тоже часто выгорают, не выработав заявленного ресурса.

Качественно сконструированные блоки питания практически не выделяют тепло при работе, а у дешевых или перегруженных драйверов часть электроэнергии расходуется на нагрев. Причем, такие бесполезные потери электрической мощности могут быть сопоставимы, а в отдельных случаях превышать энергию, расходуемую на выделение фотонов.

Цоколь. Осветительные лампы для квартирного освещения на российском рынке снабжаются цоколем Е27, который позволяет использовать их в обычных патронах от ламп накаливания.

Лампы зарубежных производителей, предназначенные для эксплуатации в своих странах могут иметь другие цоколи, отличающиеся диаметром или шагом резьбы. К тому же, они могут выпускаться на напряжение

110 Вольт. Автомобильные светодиодные лампы освещения тоже могут снабжаться разными типами цоколя.

Корпус. Для защиты светодиодов осветительных ламп не требуется создавать каких-либо герметичных колб, как у ламп накаливания, из которых выкачан воздух и создана специальная газовая среда.

Работающие светодиоды закрываются светопропускающими пластиковыми материалами, например, из поликарбоната.

Общая компоновка элементов. Размещение составных частей светодиодной осветительной лампы у разных производителей может отличаться в зависимости от специфических задач, но все они монтируются от цоколя в последовательности драйвер - платы светодиодов - защитное стекло. Между ними устанавливаются специальные защитные экраны, теплоотвод и другие элементы.

Устройство светодиодной лампы у каждого производителя может иметь серьезные отличия от аналогичных моделей. Однако, все они подчиняются общим принципам конструирования.

Схема и устройство светодиодной лампы на 220 вольт

Светодиодная лампа на 220в, частота сети 50Гц, мощность 3Вт, тип LED3-JDR, производитель Camelion, цоколь E14, потребляемый ток 26mA, световой поток 235Лм. Температура свечения 4500 К. Это параметры заявленные производителем.

Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.

Яркость свечения светильника визуально сопоставима с энергосберегающей лампой на 7-9 Вт. Разобрать лампу оказалось не просто. Защитное стекло приклеено на совесть, прорезал склейку по контуру, но снять его без потерь не получилось – стекло плафона очень хрупкое.

На плате с наружной стороны установлены 6 smd светодиодов неизвестного типа. На обратной стороне «драйвер». Схема питания светодиодов этой лампы не удивила: для гашения избыточного напряжения используется реактивное сопротивление конденсатора С2, далее выпрямительный мост и сглаживающий конденсатор С3, а не импульсный драйвер, как в светодиодной лампе GL5,5.

Принципиальная электрическая схема светодиодной лампы LED3-JDR во многом совпадает со схемой лампы Selecta-G9-220v-5w.

Конденсатор С2 полистирольный металлопленочный типа CBB22 рассчитан на использование в цепях постоянного тока и импульсных схемах, обладает эффектом самовосстанавления, хорошей изолирующей способностью и минимальными потерями на высокой частоте. Советские аналоги - конденсаторы типов К73-17, К73-44, К71-7

Десятиомный резистор ограничивает пиковый ток заряда С3 для исключения перегрузки выпрямительного диодного моста при включении. Через резистор R1 разряжается конденсатор С3 после выключения. С1 на плате не установлен, предназначен для увеличения тока через светодиоды при необходимости. При обрыве в цепи светодиодов напряжение на С3 без резистора R2 может достигнуть 350 вольт, а с этим резистором оно хоть и превысит номинальное для конденсатора, но не настолько, чтобы тот вышел из строя.

При напряжении в сети 237 вольт напряжение на всей цепочке диодов составило 93 В, на каждом светодиоде 15,3 вольта соответственно. Корпуса излучателей на плате типоразмера 6730 (6,7х3 мм), похоже, в каждом корпусе находится матрица из 4-х последовательно включенных светодиодов. Для светодиодов белого свечения падение напряжения при номинальном токе порядка 3,5 вольт. В нашем случае получается 3,8 вольта на каждом диоде, т.е. диоды работают в жестком режиме. Об этом говорит и то, что их температура при работе составляет 50-60 градусов Цельсия. В таком режиме диоды подвержены усиленной деградации и срок их службы будет в разы меньше, чем при номинальных токах. Производитель никогда не будет делать «вечную» лампу, иначе он разорится.

Фактический ток потребления при напряжении сети 237 вольт составил 30 мА, т.е. лампа потребляет от сети порядка 6 Вт, хотя написано 3 Вт. Таким образом производитель лукавит, выдавая желаемое за действительное.

На этом фото, для сравнения, показаны однокристальные светодиоды 3528 (3,5х2,8 мм) у которых номинальный ток 20 мА.

Более эффективные (но больших габаритов) светодиодные светильники на 220 вольт можно сделать своими руками из диодной ленты. Для этого нужно взять 20 отрезков ленты 3528 на 12 вольт и спаять их последовательно, соблюдая полярность. Конденсаторы С1, С2 и резисторы R1, R2 исключаются из схемы. Вместо R1 надо поставить перемычку, а С3 должен быть на напряжение не менее 310 вольт. В данной схеме 10-тиомный резистор будет служить еще и предохранителем в случае короткого замыкания моста. На такой светильник понадобиться 1 метр открытой ленты с 60 диодами (20 отрезков по 5 сантиметров) или 0,5 метра с 120 диодами (20 отрезков по 2,5 см). Конструкция и размеры могут быть различными, главное соблюдать технику безопасности и, конечно, такой светильник должен иметь корпус с хорошей изоляцией.

Светодиодная лампа на 220 вольт своими руками

Светодиодные лампы (лампы на светоизлучающих диодах) иногда их также называют твердотельные лампы, становятся очень популярными в последние годы. Они являются достаточно экономичным источником света. И хотя их световой поток, как правило, (в 2010 году) слабее, чем у тех же ламп накаливания или энергосберегающих ламп дневного света, их преимуществом является очень низкое энергопотребление, которое в большинстве случаев составляет 0,5…3 ватт. К счастью, благодаря новым технологиям, выпуск новых светодиодов с большим световым потоком растет из года в год.

Доступны светодиоды различных цветов, но наиболее востребованными остаются светодиоды белого цвета. Белые светодиоды обладают различными значениями температуры спектра, начиная от теплого белого, имитируя обычные лампы дневного света (2700 10 000 K).

Помимо этого необходимо делать различие между точечными и рассеивающими светодиодами, которые имеют угол рассеивания от 10 до 150 градусов.Цены на светодиоды, с техническим прогрессом, продолжают снижаться, а световая отдача становится все больше.

Питание светодиодной лампы от сети 220 вольт

Для питания светодиодной лампы от сети 220 вольт необходимо, создать подходящий источник питания или балласт. Для снижения энергопотребления и минимизации размеров лампы, применение трансформатора не является хорошим выбором. Поэтому, как правило, применяют гасящий конденсатор в цепи переменного тока. Так же в цепь включают сопротивление для ограничения пускового тока. Параллельно гасящему конденсатору подключают резистор, для того чтобы обеспечить разряд после выключения.

Большинство светодиодов имеют ток потребления не более 20мА, этот соответствует току (в случае использования в лампе небольшого числа светодиодов) полученному при использовании конденсатора в 330нФ. Светодиоды могут быть подключены группами в различном количестве, не превышая общего количества в 20 светодиодов.

Для бОльшего количества светодиодов необходимо подобрать большую емкость гасящего конденсатора. Рассчитать необходимую емкость поможет онлайн калькулятор .

Наиболее распространенный размер светодиода 5мм. Для первой светодиодной лампы использованы 5 миллиметровые светодиоды белого холодного свечения 5 штук с током 20 мА и с большим углом рассеивания в 150 градусов.

Для второй светодиодной лампы – 15шт. 5 мм светодиодов с типовой яркостью 15000 мкд и углом рассеивания 25 30 градусов. Максимальный ток потребления светодиода составляет 30 мА, а падение на одном светодиоде около 3,1 В.

Источник питания светодиодной лампы улучшается с применением электролитического конденсатора подключенного параллельно цепи светодиодов. Это устраняет стробоскопический эффект, а также защищает светодиоды от пусковых токов и помех в электросети.

Внимание! Источник питания светодиодной лампы не имеет гальванической развязки с электроцепи 220 вольт. Поэтому наладку и эксплуатацию данного устройства необходимо проводить с особой осторожностью.

Источники: http://forum220.ru/led-construction.php, http://firstelectro.ru/led-lampa.html, http://fornk.ru/1141-svetodiodnaya-lampa-na-220-volt-svoimi-rukami/

Комментариев пока нет!
Ваше имя *
Ваш Email *

Сумма цифр справа: код подтверждения